MPM Spring Workshop - INRAE Aix-En-Provence
June 2, 2023 June 2, 2023

From multiphase formulations to earthquake triggered failures in MPM

Alba Yerro ayerro@vt.edu

Assistant Professor Department of Civil and Environmental Engineering, Virginia Tech

Motivation

Geotechnical problems $\langle \underline{\hspace{1cm}} \rangle$ Soil-water-structure interactions & large deformations

(Geoengineer, 2020)

(YouTube video by Lynn Coleman)

Cone penetration testing

- Predicting consequences of geotechnical hazards is important for risk assessment.
- Studying large deformations, multi-phase, and multi-body interactions is challenging.
- Historically, geotechnical engineers focus on determining the stability of geotechnical systems.
- Classic techniques and state-of-practice numerical tools "only" estimate failure initiation.

■ Hydro-mechanical MPM formulations

- **Unsaturated framework**
- \blacksquare Internal erosion
- Earthquake triggered failures
	- Challenges in earthquake-triggered large-scale failures
	- Non-zero kinematic boundary conditions
	- Site response
		- **Periodic boundary conditions**
		- Generalized- α time integration scheme
	- Application

Rainfall and drawdown triggered slope failures

- Intense rainfall and rapid drawdown are leading causes of landslides and levee collapses around the world and have enormous social impacts every year.
- Climate change increases uncertainty.
- Complex boundaries including transient hydraulic head, seepage face, and infiltration/evaporation.
- Multi-phase formulations are needed to simulate saturated and unsaturated soils.

269 landslides recorded in the region (Brazil's Civil Defense Secretariat)

PETROPOLIS, Brazil, Feb 16, 2022 Failure of the Wilnis levee in the Netherlands, August 26, 2003

MPM multi-phase formulations

■ Dynamic coupled hydro-mechanical approaches capable of modelling large deformations in multi-phase conditions

3-Phase MPM formulation

 $a_s - a_l - a_g$ formulation (fully dynamic) **1. Solution**

1. Solid grains are incompressible

1. Solid grains are incompressible

1. Solid grains are incompressible

2. Fluids are weakly compressible

3. Liquid flow follows Darcy's law

4. Isothermal conditions **2. Fluid 19. Fluids are weakly comprised assumptions:**
 2. Fluids are weakly compressible

2. Fluids are weakly compressible

2. Fluids are weakly compressible

3. Liquid flow follows Darcy's law

4. Isothermal conditi **1/ation**
 1/ation
 2. $a_l - a_g$ formulation (fully dynamic)
 3. Solid grains are incompressible

2. Fluids are weakly compressible

3. Liquid flow follows Darcy's law

4. Isothermal conditions

5. No mass exchange be 4. Isothermal conditions

General assumptions:

-
-
-
- formulation \vert 4. Isothermal conditions
- S. No mass exchange between solid and fluid phases
Yerro et al (2015,2016)

Yerro et al (2015)

3-Phase MPM formulation

- 3-Phase MPM formulation

1) Dynamic equilibrium Liquid
 $\rho_l a_l = \nabla p_l f_l^d + \rho_l b$ 3-Phase MPM formulation

1) Dynamic equilibrium Liquid
 $\rho_l a_l = \nabla p_l - f_l^d + \rho_l \mathbf{b}$

2) Dynamic equilibrium Gas
 $\rho_g a_g = \nabla p_g - f_g^d + \rho_g \mathbf{b}$ μ $\boldsymbol{u}_l = \boldsymbol{v} p_l - \boldsymbol{f}_l + p_l \mathbf{v}_l$ $d + \alpha \mathbf{h}$ ι D
- $_g u_g = v p_g j g + p_g v$ $d + \alpha$ h $g^{\mathbf{D}}$
- 3-Phase MPM formulation

1) Dynamic equilibrium Liquid
 $\rho_l a_l = \nabla p_l f_l^d + \rho_l \mathbf{b}$

2) Dynamic equilibrium Gas
 $\rho_g a_g = \nabla p_g f_g^d + \rho_g \mathbf{b}$

3) Dynamic equilibrium Mixture
 $\rho_s (1 n) a_s + \rho_l n S_l a_l + \rho_g n S_g a_g = \nabla \cdot \mathbf{\sigma} +$ 1) Dynamic equilibrium Liquid
 $\rho_l \mathbf{a}_l = \nabla p_l - \mathbf{f}_l^d + \rho_l \mathbf{b}$

2) Dynamic equilibrium Gas
 $\rho_g \mathbf{a}_g = \nabla p_g - \mathbf{f}_g^d + \rho_g \mathbf{b}$

3) Dynamic equilibrium Mixture
 $\rho_s (1 - n) \mathbf{a}_s + \rho_l n S_l \mathbf{a}_l + \rho_g n S_g \mathbf{a}_g = \nab$ $\rho_s(1-n)\mathbf{a}_s + \rho_l n S_l \mathbf{a}_l + \rho_g n S_g \mathbf{a}_g = \nabla \cdot \mathbf{\sigma} + \rho_m \mathbf{b}$
- S and the same state of \mathcal{S}
- 2) Dynamic equilibrium Gas
 $\rho_g a_g = \nabla p_g f_g^d + \rho_g b$

3) Dynamic equilibrium Mixture
 $\rho_s (1 n) a_s + \rho_l n s_l a_l + \rho_g n s_g a_g = \nabla \cdot \sigma +$

4) Mass balance Solid
 $\frac{Dn}{Dt} = (1 n) \nabla \cdot v_s$

5) Mass balance Liquid
 $n \frac{\partial (\rho_l S_l)}{\partial p_l} p_l +$ 3) Dynamic equilibrium Mixture
 $\rho_s(1-n)a_s + \rho_l n s_l a_l + \rho_g n s_g a_g = \nabla \cdot$

4) Mass balance Solid
 $\frac{Dn}{Dt} = (1-n)\nabla \cdot v_s$

5) Mass balance Liquid
 $n \frac{\partial(\rho_l s_l)}{\partial P_l} \dot{p}_l + n \frac{\partial(\rho_l s_l)}{\partial P_g} \dot{p}_g = \nabla \cdot [n s_l \rho_l (v_l - v_s)]$

6) Mass bal 4) Mass balance Solid
 $\frac{Dn}{Dt} = (1 - n)\nabla \cdot \mathbf{v}_s$

5) Mass balance Liquid
 $n \frac{\partial(\rho_l S_l)}{\partial P_l} \dot{p}_l + n \frac{\partial(\rho_l S_l)}{\partial P_g} \dot{p}_g = \nabla \cdot [nS_l \rho_l (\mathbf{v}_l - \mathbf{v}_s)] - nS_l$

6) Mass balance Gas
 $n \frac{\partial(\rho_g S_g)}{\partial P_l} \dot{p}_l + n \frac{\partial(\rho_g S_g)}{\partial P_g}$ $n \frac{\partial (p_l - p)}{\partial p} \dot{p}_l + n \frac{\partial (p_l - p)}{\partial p} \dot{p}_q$ $\partial(\rho_l S_l)$ $\partial(\rho_l S_l)$ $\partial(\rho_l S_l)$ ∂P_l P_l P_l ∂P_g mic equilibrium Gas
 $\nabla p_g - f_g^d + \rho_g \mathbf{b}$

mic equilibrium Mixture
 $n)\mathbf{a}_s + \rho_l n S_l \mathbf{a}_l + \rho_g n S_g \mathbf{a}_g = \nabla \cdot \mathbf{\sigma} + \rho_m \mathbf{b}$

balance Solid
 $(1 - n)\nabla \cdot \mathbf{v}_s$

balance Liquid
 $\dot{p}_l + n \frac{\partial(\rho_l S_l)}{\partial P_g} \dot{p}_g = \nabla \$ $\partial(\rho_l S_l)$ $\qquad \qquad \Gamma$ $\qquad \qquad$ Γ ∂P_g $\qquad \qquad$ $\Box P_g$ $\begin{aligned} &\text{ln} \mathbf{c} \text{ equilibrium mixture} \ &\text{n}) \mathbf{a}_s + \rho_l n S_l \mathbf{a}_l + \rho_g n S_g \mathbf{a}_g = \nabla \cdot \mathbf{\sigma} + \rho_m \mathbf{b} \ \text{balance Solid} \ &\text{1} - n) \nabla \cdot \mathbf{v}_s \ \text{balance Liquid} \ &\text{2} \rho_l + n \frac{\partial (\rho_l S_l)}{\partial P_g} p_g = \nabla \cdot [n S_l \rho_l (\mathbf{v}_l - \mathbf{v}_s)] - n S_l \rho_l \nabla \cdot \mathbf{v}_s \ \text{balance Gas} \ &\text{2} \$
-

$$
n\frac{\partial(\rho_g S_g)}{\partial P_l} \dot{p}_l + n\frac{\partial(\rho_g S_g)}{\partial P_g} \dot{p}_g = \nabla \cdot [nS_g \rho_g (\mathbf{v}_g - \mathbf{v}_s)] - nS_g \rho_g \nabla \cdot \mathbf{v}_s
$$

Computational cycle

 $t = t + \Delta t$

Rainfall triggered slope failures

100

 $10\,$

 0.1

Suction, s (MPa)

Model

Girona road embankments, 2010

- Embankments were subjected to heavy rainfall $\frac{3}{01}$
- Shallow failures were observed
- The slides moved downwards 2-4 m

Yerro et al (2015)

Numerical parameters

General characteristics of the soil

M-C suction-dependence param.

Suction-dependent Mohr-Coulomb model Suction-dependent Mohr-Coulomb m

Yield function
 $q = c \cos \varphi + \overline{p} \sin \varphi$

Softening rules (wetting softening)
 $\left[c = c' + \Delta c_{max} \left(1 - e^{-B(s/p_{atm})} \right) \right]$

Yield function

 $q = c \cos \varphi + \overline{p} \sin \varphi$

$$
\begin{cases}\nc = c' + \Delta c_{max} \left(1 - e^{-B(s/p_{atm})} \right) \\
\varphi = \varphi' + A \frac{s}{p_{atm}}\n\end{cases}
$$

- s suction
- constitutive stress (net stress) σ
- cohesion, friction angle c, φ
- cohesion, friction angle (sat cond.) c', φ'
- atmospheric pressure (100 kPa) $p_{\rm atm}$
- $A, B, \Delta c_{max}$ calibration parameters

Rainfall triggered slope failures

Yerro et al (2015)

MPM approaches for unsaturated soils

Yerro et al. (2022)

2-Phase + suction MPM formulation

Yerro et al (2015)

Effect of including all terms from advective fluxes in 1D infiltration problem

Linear SWRC $S_L = 1 - a_v(p_G - p_L)$

Girardi et al. (2021)

Internal Erosion

Teton Dam Failure

- \blacksquare Internal erosion is the mobilization of particles in a soil mass as a result of seepage
- Critical geotechnical hazard
- One of the leading causes of failures in levees and earth dams
- "Small-scale" mechanism that has "large-scale" consequences

Mass transfer from solid The View of the United States of Transferred and earth dams
Small-scale" mechanism that has
large-scale" consequences
Mass transfer from solid
to liquied phases

MPM multi-phase formulations

■ Dynamic coupled hydro-mechanical approaches capable of modelling large deformations in multi-phase conditions

■ Hydro-mechanical MPM formulations

- **Unsaturated framework**
- \blacksquare Internal erosion
- Earthquake triggered failures
	- Challenges in earthquake-triggered large-scale failures
	- Non-zero kinematic boundary conditions
	- Site response
		- **Periodic boundary conditions**
		- Generalized- α time integration scheme
	- Application

- Large slope deformation occurs in approximately 46% of earthquake events (Bird and Bommer, 2004).
- Thquake-triggered failures

 Large slope deformation occurs in approximately 46% of earthquake

events (Bird and Bommer, 2004).

 Current predictive methods (e.g., Newmark methods) cannot capture

large runouts and comp large runouts and complex non-linear soil behavior (e.g., liquefaction).
- Fundamental questions regarding mechanics of triggering and post-failure mobility.

Ecuador

Vine road embankment, 2018 Mw 7.0 Anchorage, Alaska

Coastal landslide, 2017 Mw 3.5 Big Sur, California

Challenges in earthquake-triggered large-scale failures

- Complex geometry and stratigraphy
- Site response (amplification/attenuation of seismic waves)
- **Treatment of boundary** conditions
- Constitutive models (cyclic hardening)

Non-zero kinematic boundary condition

- **Prescribe motion at the boundary nodes (time-dependent** Dirichlet boundary condition)
- Moving mesh

PhD student: Abdel Alsardi

Small-scale shaking table experiment

A*lsardi et al. (2021)*
sting program on

Experimental model (Wartman, 1999)

MPM model

- Small-scale slope testing program on Scale: 0.2m synthetic clay
	- Clay presented strain-softening behavior

- Stress-strain calibration with lab data
- **Strain-rate effects and shear modulus** degradation are not incorporated

Small-scale shaking table experiment

MPM results and validation

Site response analysis

■ Simulation of a fee-field column

■ Implementation of Periodic Boundary Conditions

- Ensure identical displacement for the nodes at the same spatial level.
- \blacksquare Implementation: overwriting the degrees of freedom to ensure the same nodal solution, sharing information between node sets.
- **MP relocation technique.**

 ρ_s, V_s

Alsardi & Yerro (2023)

(b) Deformed profile

- Traditionally MPM uses explicit Euler-Cromer scheme.
- **Euler-Cromer induces spurious high-frequency noise.**
- Reduces the accuracy of numerically predicted site response.

Explicit Generalized- α scheme

- A more general implementation of the Newmark-type family.
- User-controlled dissipation of higher frequencies.

Time scheme characteristics:

-
- Minimal dissipation of low-frequency modes.
- Second-order accuracy.

Implementation:

- Explicit scheme based on Hulbert and Chung (1996).
- Evaluate acceleration at an intermediate step.

■ Stability:

- Depends on the selection of minimal spectral ratio, ρ_b , and time step, Δt .
- Courant-Frederichs-Levy condition

Explicit Generalized- α scheme

- 1. Compute initial nodal mass and nodal forces: $i \cdot J_i \longrightarrow J_i$ t \vec{f} ext,t \vec{f} int,t , J_i , J_i , J_i $ext, t \quad \vec{\epsilon}$ int,t , J_i , where J_i int, t
- 2. Compute intermediate nodal acceleration at $t + \Delta t$ ($1 \alpha_m$): $\vec{a}_i^{t + \Delta t}$ ($\frac{1 \alpha_m}{t} = \frac{f_t}{M^t}$ t+ Δt (1- α_m) $\frac{J_i}{J_i}$ t to the set of \mathcal{L} \dot{i} t b
- 3. Compute final nodal acceleration at $t + \Delta t$: $\vec{a}_i^{t + \Delta t} = \frac{\Delta t}{\Delta t}$ $t + \Delta t = \frac{a_i}{i}$ $t + \Delta t (1 - \alpha_m)$ Δt m u_i t \boldsymbol{m} and the set of \boldsymbol{m}
- 4. Compute MP velocity at $t + \Delta t$: $\vec{v}_{MP}^{t+ \Delta} = \vec{v}_{MP}^t + \sum_{i=1}^{neq} N_i$ [(1) $t+\Delta = \vec{i}t + \nabla^{n}el \vec{N}$. $f(1)$ $\sum_{i=1}^t \vec{N}_i \left[(1-\gamma) \vec{a}_i^t + \gamma \vec{a}_i^t \right]$ i [(1 – γ) a_i + γ a_i] a_i t_{\perp} \rightarrow $\vec{a}^{t+\Delta t}$ \uparrow $i \int \mathcal{L}$ $t + \Delta t$] Δt
- 5. Compute nodal velocity at $t + \Delta t$: $i \qquad$ $t + \Delta t = \frac{\Delta n_{el} \Delta n_{MP} m_{MP} \nu_{MP}}{2}$ $t + \Delta t$ \mathbf{i} t
- 6. Compute displacements at $t + \Delta t$:

$$
\vec{u}_{MP}^{t+\Delta t} = \vec{u}_{MP}^t + \vec{v}_{MP}^{t+\Delta t} \Delta t + \Sigma_{i=1}^{n_{el}} \vec{N}_i \left[\left(\frac{1}{2} - \beta_m \right) \vec{a}_i^t + \beta_m \vec{a}_i^{t+\Delta t} \right] (\Delta t)^2
$$

Site response analysis

Verification model

Comparison with:

- 1. PLAXIS (FEM, Newmark- β)
- 2. Linear solution

Assuming linear elastic material.

instabilities using periodic boundary conditions in MPM. Journal

Small deformation - irregular cyclic loading
² Alsardi & Yerro (2

Large deformation with cell crossing

Time domain

MP vs Gauss integration

Parametric analysis of coseismic slope failures

Effects of shaking intensity, embankment size, and material brittleness on runout **Failures**
Alsardi & Yerro (2023)
and material

Parametric analysis of coseismic slope failures

Effects of shaking intensity, embankment size, and material brittleness on runout **Failures**
Alsardi & Yerro (2023)
and material

Earthquake-triggered failures in saturated soils

- Earthquake-induced liquefaction of earthen embankment
■ Earthquake-induced liquefaction of earthen embankment
- Constitutive model: Intergranular Strain Anisotropy Hypoplastic Model **ils**
Alsardi & Yerro (2024)
c Model

References

- Alsardi, A., Copana, J., Yerro, A., 2021. Modelling earthquake-triggered landslide run-out with the Material Point Method. ICE Geotechnical Engineering, 174(5), 563-576.
- References

Alsardi, A., Copana, J., Yerro, A., 2021. Modelling earthquake-triggered landslide run-out with the

Material Point Method. <u>ICE_Geotechnical Engineering</u>, 174(5), 563-576.

Alsardi, A., Yerro, A., 2023. Coseis conditions in the material point method. Journal of Rock Mechanics and Geotechnical Engineering, 15(3), 641-658. **References**

Alsardi, A., Copana, J., Yerro, A., 2021. Modelling earthquake-triggered landslide run-out with the
 Material Point Method. ICE Geotechnical Engineering, 174(5), 563-576.

Alsardi, A., Yerro, A., 2023. Cose
- Anisotropy Hypoplastic Model. Geo-Congress 2024, Vancouver, Canada, February 25-28, 2024.
- Ceccato, F., Yerro, A., Girardi, V., Simonini, P., 2021. Two-phase dynamic MPM formulation for unsaturated soil. Computers and Geotechnics, 129, 103876.
- Girardi, V., Yerro, A., Ceccato, F., Simonini, P., 2021. Modeling large deformations in water retention structures with an unsaturated MPM approach. ICE Geotechnical Engineering, 174(5), 577-592.
- Murphy, J., Yerro, A., Soga, K., 2020. A New Approach to Simulate Suffusion Processes with MPM. In: Proc. Geo-Congress 2020. Minneapolis, U.S., February 2020.
- Yerro, A., Alonso, E., Pinyol, N., 2015. The material point method for unsaturated soils. Géotechnique, 65(3), 201-217.
- Yerro, A., Rohe, A., Soga, K., 2017. Modelling internal erosion with the Material Point Method. In: Proc. International Conference on the Material Point Method, Delft, The Netherlands.
- Yerro, A., Girardi, V., Martinelli, M., Ceccato, F., 2022. Modelling unsaturated soils with the Material Point Method. A discussion of the state-of-the-art. Geomechanics for Energy and the Environment, 32, 100341.

Acknowledgements

NSF Grant Numbers CMMI-1937984 **GiD** CMMI-2211002

Thanks for your attention ayerro@vt.edu